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Introduction

Der gierige Beamte war bei den Einwohnern sehr unbeliebt.
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Figure 1. In a typical eye trajectory in reading, about half of all saccades
move the foveal part of the visual field from word n to the next word
n + 1. Other saccade types generate refixations (e.g. 2–3), word
skipping (e.g. 7–8), and regressions (8–9).

SWIFT (Engbert, Nuthmann, Richter, & Kliegl, 2005) is a dy‐
namical cognitive model of eye‐movement control in read‐
ing. Words within the processing span centered around the
current fixation position are processed in parallel via a tem‐
porally evolving activation field (see Figure 2).
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Figure 2. Simulated eye trajectory (solid black line) in the SWIFT model.
Thin lines are word activations (colored) and timers (gray) as a function
of time. Asterisks mark points in time when a saccade program is
executed.

Recently, we implemented SWIFT for Bayesian parameter
estimation (Seelig et al., 2019). We fitted the model to a
diverse reading dataset in order to evaluate the goodness of
fit with various temporal and spatial summary statistics.

For the simulations reported here, we replaced the standard
Gaussian saccade error model (McConkie, Kerr, Reddix, &
Zola, 1988) with Gamma‐distributed saccade amplitudes:
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Figure 3. Comparison of saccade amplitude distributions for saccade
targets left or right to the current fixation location (dashed gray line).

Bayesian parameter estimation

Bayesian model fitting allows us to infer rigorous credibility
inter vals for model parameters. Additionally, we can deter‐
mine model parameters for individual participants, which was
often precluded in previous methods.

In SWIFT, the likelihood of a fixation fi = (ki, li, Ti, si) on letter
li of word ki for Ti, is given as the combined spatial and tem‐
poral likelihoods, both conditional on all preceding fixations
Fi−1 = {f1, ..., fi−1}, model parameters θ and internal degrees
of freedom ξ due to model stochasticity:

PM(fi|Fi−1, θ, ξ) = Ptemp(Ti, si|ki, li, Fi−1, θ, ξ) · Pspat(ki, li|Fi−1, θ, ξ)

While Pspat is exact and only depends on the initial state of
the system (ξ), Ptemp must be approximated by simulation.

Computational modelling

SWIFT has many parameters with possibly multimodal
distributions and stochastic likelihood
Differential evolution Metropolis algorithm DREAMZS
(Vrugt et al., 2009) has been shown to work very reliably
with complex models
Implementation based on PyDREAM (Shockley, 2019)
Customized to enable reevaluation of stochastic
likelihood of previously accepted proposal for each
MCMC iteration
Model is fitted on 70% of each subject’s data
Predictive checks are carried out on the unseen 30%

Computational faithfulness

Likelihood profiles for selected parameters show that for sim‐
ulated data, (1) the true parameter values are most likely and
(2) model parameters have different selective influences on
spatial and temporal likelihood components:
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Figure 4. Centered log‐likelihood profiles of a subset of model
parameters with temporal and spatial components. Vertical dashed lines
are true parameter values.
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Figure 5. Parameter recovery study for 72 simulated datasets and a
subset of model parameters. Recovered estimates are MAP estimators.

Experimental method

Table 1. Reading conditions

N Jede Sprache der Welt besitzt eine Grammatik
mL edeJ ehcarpS red tleW tztiseb enie kitammarG
sL Jdee Scrahpe der Wlet bsizett enie Gmartimak
iW edeJ ehcarpS red tleW tztiseb enie kitammarG
mW Jede Sprache der Welt besitzt eine Grammatik

Chandra, Krügel, and Engbert (2019) tested 36 native
German speakers with normal or corrected‐to‐normal
vision
First session: Reading normal text (condition N)
Second session: One of four manipulated reading
conditions (conditions mL, iW, mW, and sL; see Table 1)

Group-level results

sre1 sre1
(RF) sre2

(RF) sre2
(SK) τn l

M tsac omn1 omn2 R sre2
(FS)

α β decay δ η γ

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.000.250.500.751.00 0.000.250.500.751.00 0.0 0.5 1.0 1.5
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Figure 6. Posterior parameter distributions. Each color represents the aggregated sampled
posteriors across all subjects in that condition. Priors (gray dashed lines) are truncated normal
with support on 1 SD around the mean and were identical across subjects and conditions.

●●●●●●●●●●●
●●●

●
●●

●
●

●●●
●

●

●

●

●
●

●

●

●

●

●
●
●●

●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●

●

●

●

●

●●
●

●

●

●

●
●
●●●●●●● ●●●●●●●●●●●●●

●
●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●
●

●

●

●

●
●
●

●

●

●

●

●
●
●●●●●●●● ●●●●●●●●●●●●

●●
●
●
●●●

●
●
●

●

●

●

●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●
●
●

●

●

●

●●

●

●

●

●

●
●
●●●●●●●● ●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●

●●
●

●

●

●●
●
●

●

●

●
●
●●

●●●●●●●● ●●●●●●●●●●●●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●
●●

●

●

●

●●●
●

●

●
●
●
●
●●●●●●●●●

N mL sL iW mW

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20
0.00

0.05

0.10

0.15

Saccade amplitude

R
el

at
iv

e 
fr

eq
ue

nc
y

Data source ● ●empirical simulated

Figure 7. Empirical and simulated saccade amplitudes aggregated across all participants in each
experimental condition, including the baseline condition (N).
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Figure 8. Empirical and simulated spatial summary statistics for different experimental conditions,
aggregated across subjects, as a function of word length.
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Figure 9. Empirical and simulated temporal summary statistics for different experimental
conditions, aggregated across subjects, as a function of word length.

Interindividual variability

In addition to variability at the group level (i.e., effects be‐
tween experimental conditions), the method also reliably
predicts the between‐subject variability for most spatial and
temporal summary statistics.
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Figure 10. Correlation between empirical and simulated temporal
summary statistics. Each participant is represented by one dot in each
color in the respective experimental condition (panel).
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Figure 11. Correlation between empirical and simulated spatial
summary statistics. Each participant is represented by one dot in each
color in the respective experimental condition (panel).

Analysis of parameter estimates

Effects in model parameters between conditions (see Fig‐
ure 12) may explain observable differences between experi‐
mental conditions. We therefore conducted linear regression
analyses with the model parameters as dependent variables.
p‐values were corrected for multiple testing (Šidák, 1967)
and assumed “significant” if pS < .05. The contrast matrix
was derived from these four null hypotheses using the hypr
package in R (Rabe, Vasishth, Hohenstein, Kliegl, & Schad,
2019; Schad, Vasishth, Hohenstein, & Kliegl, 2020):

word inverted : μiW = μN
letter flipped : μmL = μN
both flipped : μmW = μN + (μmL − μN) + (μiW − μN)
scrambled : μsL = μmL

Inverting words is associated with...

narrower processing span δ
higher baseline word difficulty α
smaller optimal saccade amplitudes for forward fixations
(sre1)
shorter global saccade timer tsac
longer labile and non‐labile saccade programs τn/l

Flipping letters horizontally is associated with...

narrower processing span δ
longer labile and non‐labile saccade programs τn/l
delayed saccade timer M after misplaced fixations
accelerated saccade timer R after well‐placed refixations
less targeted saccade execution onto word n + 1 (sre(FS)2 )

The effects of word inversion and letter flipping on model
parameters are not significantly non‐additive, as there is no
significant effect for the interaction (both flipped).

In the scrambled words condition, model parameters are not
significantly different from the effects of letter flipping, ex‐
cept for the optimal saccade target location (sre1) being
shifted to the right.

sre1 sre2
(FS) sre1

(RF) sre2
(RF)

τn l R omn1 omn2

β γ η M

tsac δ decay α

−2 0 2 −0.2 0.0 0.2 −1 0 1 0.0 0.2
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Figure 12. Linear regression coefficient estimates with uncorrected 95%
confidence intervals around the estimated means. The baseline is
tested against zero, while conditions are tested against the baseline.

Summary and Conclusion

SWIFT was successfully fitted to empirical data collected
under different reading conditions
The modelling approach is not data‐hungry and can
operate on single‐participant data
Goodness of fit was evaluated by comparing empirical
and simulated summary statistics
Subject‐levfel parameters can reliably predict
characteristics of reading patterns in unseen trials
Differences in subject‐level parameters could explain why
and how differences in reading behavior arise
SWIFT could serve as a viable baseline model for the
integration of linguistic parsing mechanisms
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