

Marie Hansen*, Valentina Aivazian*, Clara Huttenlauch, Carola de Beer, Sandra Hanne & Isabell Wartenburger SFB 1287, Cognitive Sciences, Department of Linguistics, University of Potsdam (* equal contribution)

BACKGROUND

- in structurally ambiguous coordinate structures, such as (I) and (II), prosodic cues aid ambiguity resolution [1, 3]
- intonation phrase boundaries RESEARCH GOALS (IPB, see (II)) can indicate intended grouping [2, 4]
- speakers also modulate prosodic cues located before the IPB (i.e., at Name1) [2, 4]

leng = syllable duration pau = pause f0 = f0 rise

RESULTS & DISCUSSION

How Much Prosody is Needed? -Perception of Prosodic Grouping in Gated Ambiguous Name Sequences

- Is a reliable detection of intended grouping possible already before the IPB?
- > Test successive exploitation of prosodic cues in human population experimentally and through diffusion modeling > Compare results to performance of machine learning (ML) models

METHODS

Human listeners (n=43):

- Gating Paradigm: 192 stimuli split into seven parts ("gates") each
- Gated stimuli presented successively with increasing length & amount of prosodic information
- Two alternative forced choice decision task: grouping or no grouping?

Stimulus	Le	ni			und	Mim	mi			und	Ma	nu
Prosodic cues	leng	fO	leng	pau		leng	fO	leng	pau			
Gates	1	2			3	4	5			6	7	
ML models	1		2	3		4		5	6			

ML models:

• Linear classification models with increasing number of variables (prosodic cues), 6 models in total • Logistic regression [6]

- Repeated k-fold
 - cross-validation