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Abstract:  To learn how cognition is implemented in the brain, we must build computational models 
that can perform cognitive tasks, and test such models with brain and behavioral experiments [1]. 
Modern technologies enable us to measure and manipulate brain activity in unprecedentedly rich ways 
in animals and humans. However, experiments will yield theoretical insight only when employed to 
test brain-computational models. Recent advances in neural network modelling have enabled major 
strides in computer vision and other artificial intelligence applications. This brain-inspired technology 
provides the basis for tomorrow’s computational neuroscience [1, 2]. Deep convolutional neural nets 
trained for visual object recognition have internal representational spaces remarkably similar to those 
of the human and monkey ventral visual pathway [3]. Functional imaging and invasive neuronal 
recording provide rich brain-activity measurements in humans and animals, but a challenge is to 
leverage such data to gain insight into the brain’s computational mechanisms [4, 5]. 
We build neural network models of primate vision, inspired by biology and guided by engineering 
considerations [2, 6]. We also develop statistical inference techniques that enable us to adjudicate 
between complex brain-computational models on the basis of brain and behavioral data [4, 5]. I will 
discuss recent work extending deep convolutional feedforward vision models by adding recurrent 
signal flow and stochasticity. These characteristics of biological neural networks may improve 
inferential performance and enable neural networks to more accurately represent their own 
uncertainty. 
 
[1] Cognitive computational neuroscience. Kriegeskorte, N., & Douglas, P. K. (2018). Nature neuroscience   
[2] Deep neural networks: A new framework for modeling biological vision and brain information processing Kriegeskorte N (2015) Annu. Rev. Vis. 
Sci.   
[3] Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation Khaligh-Razavi SM, N Kriegeskorte (2014) 
PLoS Computational Biology   
[4] Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis 
Diedrichsen J, Kriegeskorte N (2017) PLoS Computational Biology   
[5] Inferring brain-computational mechanisms with models of activity measurements Kriegeskorte N, Diedrichsen J (2016) Philosophical 
Transactions of the Royal Society B   
[6] Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition Spoerer CJ, McClure P, Kriegeskorte N (2017) 

Frontiers in Psychology   
 
An introductory seminar to the topic of the colloquia will be given beforehand by Alma Lindborg  online 
from 2 to 2:45 pm for all junior scientist.  
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Nonlinear activation function needed
to make a hidden layer useful

Networks with nonlinear 
hidden units are universal
function approximators.
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Kriegeskorte & Golan 2019 (primer for biologists)

nonlinear activation functions
y2 = f( f(x∙W1) ∙ W2)

y1 = f(x∙W1)



Why deep?

>1 hidden layer1 hidden layer
shallow deep

Kriegeskorte & Golan 2019 (primer for biologists)

Networks with nonlinear 
hidden units are universal
function approximators.

Deep nets can
• reuse features 

downstream
• represent many 

complex functions 
more concisely (fewer 
units and weights).

Networks with nonlinear 
hidden units are universal 
function approximators.

recurrent

Recurrent networks
• can recycle weights and 

units over time
• are universal 

approximators of 
dynamical systems.

Why recurrent?



Deep convolutional feedforward neural networks
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Testing neural network models
with brain-activity data
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convolutional fully
connected

weighted combination of
layers and SVM discriminants 

highest accuracy any
model can achieve

other subjects’ average
as model

accuracy above 0
p < 0.05, Bonf. corr.
(stimulus bootstrap)

SE
(stimulus bootstrap)

Khaligh-Razavi & Kriegeskorte 2014, Nili et al. 2014 (RSA Toolbox), Storrs et al. (in prep.)

model comparisons (stimulus bootstrap, p < 0.05, 
Bonferroni corrected for all pairwise comparisons)

Deep convolutional feedforward networks predict
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early visual areas
(foveal confluence of V1-3)

lateral occipital complex
(LOC)

Deep-net layers correspond to stages
of the ventral visual stream

Khaligh-Razavi & Kriegeskorte 2014, Nili et al. 2014 (RSA Toolbox)



Deep-net layers correspond to stages
of the ventral visual stream

deep-net layer that best explains each voxel

Güçlü & van Gerven 2015, data from Kay et al. 2008



High explained variance for IT
neuronal recordings

Yamins et al. 2014
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Diverse deep feedforward neural networks predict IT, 
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The converging feedforward story…

• Deep convolutional feedforward neural networks explain how the initial 
sweep through the primate visual hierarchy enables recognition at a glance.

• They predict representations of novel images better than any alternative 
current models.

• Both the architecture of the model and the task training contribute 
substantially to these successes.

However, we need to build models whose architecture more closely resembles 
the visual hierarchy.
A major feature of biological neural networks is recurrent signal flow.
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Do recurrent convolutional neural 
networks provide better models of 
vision?

Courtney Spoerer



Recurrent convolutional
neural networks

𝜎𝜎(ℎ𝐵𝐵) 𝜎𝜎(ℎ𝐵𝐵 + ℎ𝐿𝐿) 𝜎𝜎(ℎ𝐵𝐵 + ℎ𝐿𝐿 + ℎ𝑇𝑇)

B (FF-CNN) BLT (RCNN)BL (RCNN)

𝜎𝜎 - non-linearity
ℎ𝑥𝑥 - convolution

Liang & Hu 2015, Spoerer et al. 2017



Digit debris:
recognition under occlusion

Spoerer et al. 2017

target = “3” target = “1”



Digit clutter:
Multiple digit recognition

Spoerer et al. 2017



Can recurrent convolutional networks 
be scaled up to process

natural images?



Recurrent convolutional networks
trained to recognize natural images
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RCNNs predict human reaction times
human-model correlation of RT

across images [Pearson r]

recurrent
models

noise 
ceiling

Spoerer et al. 2020



Tim Kietzmann

Can recurrent neural network models 
capture the representational dynamics
in the human ventral stream?



“early” “intermediate” “high-level”

Representational dynamics

Kietzmann et al. 2019, Cichy et al. 2015

stimuli

brain regions

human magnetoencephalography



Movie time

100×
slow motion

stime:

Kietzmann et al. 2019



Low-level features: gist model

Gist-like geometries first emerge in early visual areas, 
where they remain stronger throughout.



Categorical clustering: animacy

Animacy emerges first in IT/PHC, and only later  in V4t/LO1-3.



magnetoencephalography functional magnetic resonance imaging

feedforward recurrent

Recurrent models better explain 
representations and their dynamics

Kietzmann et al. 2019



The emerging recurrent story…

• Recurrent neural networks provide a more neurobiologically realistic and 
computationally powerful modeling framework.

• Recurrent processing can enable a network to
– recycle its computational resources,
– perform more robust inferences, and
– flexibly trade off speed and accuracy.

• Recurrent models also better explain the representational dynamics of 
the human ventral stream.
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Controversial stimuli: motivation: 
pitting neural networks 
against each other
as models of 
human recognition

• Theoretical progress depends on experiments for which competing theories
make distinct predictions.

• We can implement competing theories in testable NN models.

• However, NN models have many parameters, and theoretically distinct models 
often make similar predictions for natural stimuli.

Golan et al. 2020, Wang & Simoncelli 2008

Insight 1: To elicit models’ distinct inductive biases we can test models on a 
population of stimuli not used in training (out of distribution).

– natural stimuli drawn from a different stimulus population
– synthetic stimuli (optimized to elicit bolder predictions,

e.g. superstimuli, adversarial stimuli, and metamers)
Insight 2: Since our goal is to adjudicate among models, we can create 
synthetic stimuli optimized to elicit distinct predictions from different models: 
stimuli that are controversial among the models.



Controversial stimulus

Abbasi-Asl et al. 2018, Malakhova 2018,
Ponce et al. 2019, Bashivan et al. 2019,
Walker et al. 2019

Golan et al. 2020
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Tested models
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Controversiality index
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Controversial stimuli
(optimized by gradient descent)

adversarial example
a stimulus that is controversial

between a model and ground truth

Golan et al. 2020



Controversial stimuli
(optimized by gradient descent)
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Controversial stimuli
(optimized by gradient descent)

MNIST
MNIST+nondigits

adversarial training

Golan et al. 2020



Controversial stimuli
(optimized by gradient descent)

discriminative
generative

Golan et al. 2020
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Behavioral experiment

Golan et al. 2020



Behavioral experiment

• 30 subjects (tested via Prolific)

• stimuli included 20 controversial stimuli per model pair 
(36*20) + 100 MNIST images = 820 images per subject

• stimuli presented in a randomized order

• 820 stimuli x 10 scales x 30 subjects
(246,000 data points)



Controversial stimuli
(optimized by gradient descent)

significantly 
dominates

Golan et al. 2020



Controversial stimuli
(optimized by gradient descent)natural images 
(CIFAR-10 set of small images)
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Overall conclusions
1. We can adjudicate among task-performing deep net models by 

inferentially comparing their representations to brain representations.
Nili et al. 2014, Kriegeskorte & Diedrichsen 2019

2. Recurrent convolutional vision models better predict human ventral 
stream representational dynamics and reaction times
Kietzmann et al. 2019, Spoerer et al. 2020

3. Controversial stimuli enable us to elicit differences in the inductive biases 
of deep net model.
Golan et al. 2020

4. Human vision may rely on a computational mechanism that combines 
elements of discriminative and generative inference.
Golan et al. 2020
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