Bayesian inference of the SWIFT model.
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Introduction

SWIFT (Engbert, Nuthmann, Richter, & Kliegl, 2005) is a dy-
namical cognitive model of eye-movement control in read-
ing. Words within the processing span centered around the
current fixation position are processed in parallel via a tem-
porally evolving activation field (see Figure 1).
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Fieure 1. Simulated eye trajectory (solid black line) in the SWIFT model.
Thin lines are word activations (colored) and timers (gray) as a function
of time. Asterisks mark points in time when a saccade program is
executed.

Recently, we implemented SWIFT for Bayesian parameter
estimation (Seelig et al., 2019). The model was fitted to a
diverse reading dataset in order to evaluate the goodness of
fit with various temporal and spatial summary statistics.

For the simulations reported here, we replaced the standard
Gaussian saccade error model with Gamma-distributed sac-
cade amplitudes:
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Flieure 2. Comparison of saccade amplitude distributions for saccade
targets left or right to the current fixation location (dashed gray line).

Bayesian parameter estimation

Bayesian model fitting allows us to infer rigorous credibil-
ity intervals for model parameters. Additionally, we can de-
termine model parameters for individual participants, which
was often precluded in previous methods.

In SWIFT, the likelihood of a fixation f; is given as the com-
bined spatial and temporal likelihoods, both conditional on
all preceding fixations F;_1:
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Likelihood profiles for selected parameters show that for
simulated data, (a) the true parameter values are most likely
and (b) model parameters can have different selective influ-
ences on spatial and temporal likelihood components:
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Figure 3. Centered log-likelihood profiles (black) with temporal and
spatial components. Each respective likelihood component was
centered around its mean. Vertical red lines are true parameter values.

Experimental method

Table 1. Reading conditions
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= 36 native German speakers with normal or
corrected-to-normal vision

= Normal reading (N) in first lab session

= One of four manipulated reading conditions (see Table 1)
iIn second lab session
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Fleure 4. Posterior parameter distributions. Each color represents the aggregated sampled
posteriors across all subjects in that condition. Priors (gray dashed lines) are truncated normal
with support on 1 SD around the mean and were identical across subjects and conditions.
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Flieure 5. Empirical and simulated saccade amplitudes aggregated across all participants in each
experimental condition, including the baseline condition (N).
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Flgure 6. Empirical and simulated temporal (1-5) and spatial (6-10) summary statistics for
different experimental conditions, aggregated across subjects, as a function of word length.
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Figure /. Correlation between empirical and simulated temporal summary statistics. Each
participant is represented by one dot in each color in the respective experimental condition
(panel).
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Figure 8. Correlation between empirical and simulated spatial summary statistics. Each participant
is represented by one dot in each color in the respective experimental condition (panel).
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Computational modelling

= 17 free parameters (see Figure 4)

= /2 datasets (36 subjects x 2 sessions)

= 5 chains/dataset x 20,000 iterations/chain

= DREAMzs sampling algorithm (Vrugt et al., 2009)

= Modified version of PyDREAM (Shockley, 2019),
enabling evaluation of the pseudo-marginal likelihood

= SWIFT was fitted to 70% of the data, posterior
predictive checks (Figures 5-8) for the remaining 30%

Parameter estimates
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Flgure 9. Linear regression coefficient estimates of model parameter
estimates between experimental conditions. Error bars are 95%
confidence intervals around the estimated means. The baseline is
tested against zero, while conditions are tested against the baseline.
p-values are corrected for independent multiple testing according to

Sidak (1967) withps =1 — (1 — p)V’.

Compared to the baseline condition, significantly different
parameters in the manipulated reading conditions indicate...

= Slower overall processing (a) in iVWW/mW and sL conditions
= Smaller processing span ()

= Shorter saccade intervals (t.,.) in iIW/mW and sL

= Longer labile and non-labile processing stage (t, )

= Longer corrective fixations after mislocation (M) in
IW/mW and mL conditions

= Shorter optimal saccade amplitude (SRE intercept sreq) in
IVW/mW and sL conditions

= Less targeted saccades (higher SRE slope sre(')) for
forward fixations in mL and for refixations in iVW/mW and
sl conditions

Summary

= SWIFT was successfully fitted to empirical data collected
under different reading conditions

= Goodness of fit was ensured by comparing empirical and
simulated summary statistics

= Subject-level parameters can reliably predict
characteristics of reading patterns in unseen trials

= Differences in subject-level parameters could explain
why and how differences in reading behavior arise
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